Linear Algebra & Geometry LECTURE 2 Complex numbers cont.

A point z of the plane can be identified by its Cartesian coordinates, say (a,b), but also by its *polar coordinates*, i.e. the distance r from the origin and the angle φ between positive half-axis OX and the segment (0,0)(a,b). Hence, (a,b) = (rcos φ ,rsin φ) or, equivalently, z = a+bi = r(cos φ + isin φ). Clearly, r = $\sqrt{a^2 + b^2}$, i.e. r = |z|

Definition.

The formula $r(\cos \varphi + i \sin \varphi)$ is known as the *polar form* (sometimes *trigonometric form*) of the complex number z.

Remarks.

- $(-1)(\cos\varphi + i\sin\varphi)$ is NOT a polar form of a complex number
- $7(\cos \alpha + i \sin \varphi)$ is NOT a polar form (unless $\alpha = \varphi$)
- $666(\cos\varphi i\sin\varphi)$ is NOT a polar form (unless $\sin\varphi = 0$)
- The question "where the hell is this imaginary unit *i*" suddenly becomes meaningful. The answer is "at (0,1)".

Comprehension

- 1. Find the polar form of 1, -1, i and -i.
- 2. Find the polar form of $666(\cos \alpha i\sin \alpha)$
- 3. Knowing that the polar form of z is $r(\cos \alpha + i\sin \alpha)$ find the polar form of \overline{z} .

The angle φ is called an argument of z. Since both sine and cosine are periodic function with the period of 2π , a complex number has infinitely many arguments, each of the form $\varphi+2k\pi$ for some integer k. Hence the term "THE polar form of z" is a slight abuse of language.

Definition.

The argument of z belonging to the interval $<0;2 \pi$) is called the *principal argument* of z.

Example.

The polar form of z=1+i is $\sqrt{2}(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4})$, the polar form of z=1 is $\cos 0 + i\sin 0$, for z=-1 is $\cos \pi + i\sin \pi$

It helps if you memorize values of sine and cosine for those basic angles $0, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{6}, \frac{\pi}{2}$ and the like.

Theorem (Multiplication Lemma)

Let $z = r(\cos \alpha + i \sin \alpha)$ and $w = t(\cos \varphi + i \sin \varphi)$ be two complex numbers. Then

$$zw = rt(\cos(\alpha + \varphi) + i\sin(\alpha + \varphi)).$$

Proof.

 $zw = r(\cos \alpha + i \sin \alpha)t(\cos \varphi + i \sin \varphi) = rt((\cos \alpha \cos \varphi - \sin \alpha \sin \varphi) + i(\cos \alpha \sin \varphi + \sin \alpha \cos \varphi)) = rt(\cos(\alpha + \varphi) + i \sin(\alpha + \varphi)).$ The last transformation follows from well-known trigonometric identities. QED

Remark.

Another way of representing a complex number $z = r(\cos \alpha + i \sin \alpha)$ is the *exponential form* $z = re^{i\alpha}$. By laws of exponentiation we obtain a similar law: $zw = rt e^{i(\alpha + \varphi)}$.

Remark. This is as close as we can get to a geometrical interpretation of complex multiplication: when you multiply z by w you rotate the vector representing z counterclockwise by the argument of w and you adjust the length so that it becomes the product of lengths of z and w.

Picture from Wikipedia

Corollary (of Multiplication Lemma)

Let $z = r(\cos \alpha + i \sin \alpha)$ and $w = t(\cos \varphi + i \sin \varphi)$ be two complex numbers. Then

$$\frac{z}{w} = \frac{r}{t} \left(\cos(\alpha - \varphi) + i \sin(\alpha - \varphi) \right).$$

Proof.

$$\frac{z}{w} \text{ is the only number } x \text{ satisfying } xw = z.$$

$$\text{Try } x = \frac{r}{t} (\cos(\alpha - \varphi) + i\sin(\alpha - \varphi)).$$
Using the Multiplication Lemma we obtain
$$xw = \frac{r}{t} (\cos(\alpha - \varphi) + i\sin(\alpha - \varphi)) \cdot t(\cos\varphi + i\sin\varphi) =$$

$$r(\cos((\alpha - \varphi) + \varphi) + i\sin((\alpha - \varphi) + \varphi)) = r(\cos\alpha + i\sin\alpha) =$$

$$z \text{ hence, } x = \frac{r}{t} (\cos(\alpha - \varphi) + i\sin(\alpha - \varphi)) = \frac{z}{w}. \text{ QED}$$

Corollary (de Moivre Law)

Let $z = r(\cos \alpha + i \sin \alpha)$. Then for every positive integer n $z^n = r^n(\cos n\alpha + i \sin n\alpha)$.

Proof.

The formula follows from a repeated application of the Multiplication Lemma. (Use induction if you want to be VERY rigorous). QED

Remark. This means that when you raise z of modulus 1 to n-th power, geometrically you rotate z counterclockwise n-1 times by α (the modulus stays 1).

Example.

Calculate z^{10} where $z = 1 + i\sqrt{3}$. We will use de Moivre Law. First, we find the modulus of z and factor it out. Since |z| = 2we can write $z = 2(\frac{1}{2} + i\frac{\sqrt{3}}{2})$. The number in parenthesis belongs to the unit circle, hence, there exists α such that $\cos \alpha = \frac{1}{2}$ and $\sin \alpha = \frac{\sqrt{3}}{2}$. If you recall your high school algebra the angle is $\frac{\pi}{3}$, i.e. $z=2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3})$ and $z^{10}=$ $2^{10}\left(\cos\frac{10\pi}{3} + i\sin\frac{10\pi}{3}\right) = 1024\left(\cos(2\pi + \frac{4\pi}{3}) + i\sin(2\pi + \frac{4\pi}{3})\right) = 1024\left(\cos(2\pi + \frac{4\pi}{3}) + i\sin(2\pi + \frac{4\pi}{3})\right)$ $\left(\frac{4\pi}{3}\right) = 1024\left(\cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)\right) = 1024\left(-\frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right)\right).$ This is much more fun than going $(1 + i\sqrt{3})(1 + i\sqrt{3}) \dots$ ten times.

Definition 1.2.

Every complex number w satisfying the equation $w^n = z$ is called a *root of z of order n*.

Notice that, unlike in real numbers, both -2 and 2 are called square roots of 4. De Moivre Law can be used to calculate complex roots.

Root formula

Take $z=r(\cos \alpha + i\sin \alpha)$ and suppose $w=p(\cos \varphi + i\sin \varphi)$ is a root of z of order n. Then $w^n = p^n(\cos n\varphi + i\sin n\varphi) = r(\cos \alpha + i\sin \alpha)$. Hence, $p = \sqrt[n]{r}$ (in the usual, real-number sense) and $\cos n\varphi = \cos \alpha$ and $\sin n\varphi = \sin \alpha$.

Since 2π is the period of both sine and cosine, we obtain

 $n\varphi_k = \alpha + k2\pi$ or, equivalently, $\varphi_k = \frac{\alpha + 2k\pi}{n}$, for $k=0,\pm 1,\pm 2,\ldots$. So, $w_k = \sqrt[n]{r}(\cos\frac{\alpha + 2k\pi}{n} + i\sin\frac{\alpha + 2k\pi}{n})$.

Consider two roots whose indices differ by *n*, say
$$w_k$$
 and w_{k+n} .
 $w_{k+n} = \sqrt[n]{r} (\cos \frac{\alpha + 2(k+n)\pi}{n} + i\sin \frac{\alpha + 2(k+n)\pi}{n}) =$
 $\sqrt[n]{r} (\cos \frac{\alpha + 2k\pi + 2n\pi}{n} + i\sin \frac{\alpha + 2k\pi + 2n\pi}{n}) =$
 $\sqrt[n]{r} (\cos (\frac{\alpha + 2k\pi}{n} + 2\pi) + i\sin (\frac{\alpha + 2k\pi}{n} + 2\pi)) =$
 $\sqrt[n]{r} (\cos (\frac{\alpha + 2k\pi}{n}) + i\sin (\frac{\alpha + 2k\pi}{n})) = w_k.$
This indicates that we asly set a different mets of π of order m

This indicates that we only get *n* different roots of z of order *n*, namely w_0, w_1, \dots, w_{n-1} – no more, no less.

Important. The root formula and its consequences apply only to roots of a number **not to roots of a polynomial**.

Picture from Wikipedia.

ZRoots of order n of a
complex number z are
uniformly distributed
over the circle centered at
0 and with the radius of
 $n\sqrt{r}$. The angular distance
between any two
consecutive roots is $\frac{2\pi}{n}$.

Polynomials

Definition. A *polynomial of degree n* over a set K is any function f: $K \rightarrow K$ of the form

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

where $a_0, a_1, ..., a_n \in K$ and $a_n \neq 0$. The set of all polynomials over K is denoted by K[x].

We adopt the convention that the degree of the zero polynomial 0 is $=-\infty$. For other constant polynomials, the degree is 0. K will usually be the set \mathbb{R} or \mathbb{C} .

Definition.

Let *f* be a polynomial over K. A number *a* from *K* is called a *root* of *f* if and only if f(a) = 0.

Fact. (Remainder lemma)

For every two polynomials $f, g \in K[x]$ with $g \neq 0$ there exist polynomials $q, r \in K[x]$ such that

f = qg + r and deg(r) < deg(g).

Corollary.

A number *a* is a root of a polynomial f(x) if and only if f(x) is divisible by (x - a).

Theorem (Main Theorem of Algebra)

Every polynomial $f \in \mathbb{C}[x]$ of degree at least 1 has a root in \mathbb{C} .

Corollary.

Every polynomial $f \in \mathbb{C}[x]$ of degree *n* has exactly *n* roots (counting multiplicities).

Theorem.

If $f \in \mathbb{R}[x]$ then for every root z of f, \overline{z} is also a root of f. **Proof.**

 $f(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0$. Hence, $\overline{f(z)} = \overline{0} = 0$, and

$$\overline{f(z)} = \overline{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0} =$$

$$\overline{a_n z^n} + \overline{a_{n-1} z^{n-1}} + \dots \overline{a_1 z} + \overline{a_0} =$$

$$a_n \overline{z}^n + a_{n-1} \overline{z}^{n-1} + \dots + a_1 \overline{z} + a_0 = f(\overline{z}) = 0.$$

Corollary.

If $f \in \mathbb{R}[x]$ then *f* can be factored into a product of polynomials from $\mathbb{R}[x]$ of degree at most 2 each. **Proof.**

It follows from the fact that (x - (a + bi))(x - (a - bi)) =

$$x^{2} - x(a - bi) - x(a + bi) + (a + bi)(a - bi) =$$

$$x^{2} - 2ax + xbi - xbi + a^{2} + b^{2}.$$

Comprehension.

Prove on your own: every polynomial from $\mathbb{R}[x]$ with on odd degree has at least one real root.